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Interpolation theory for quantum mechanics 

M J MORRIS 
Department of Applied Mathematics and Mathematical Physics, University College, 
Cardiff, UK 

MS received 7 October 1971, in revised form 29 November 1971 

Abstract. We introduce methods for finding the energies and eigenstates of the Hamiltonian 
H ( I )  = (1 -A)Ho +AH, which smoothly interpolate between the limits I = 0, l .  

1. Introduction 

It is assumed the Hamiltonian 

H(A) = (1 -A)H,+AH, (1) 

succumbs to an exact treatment when A = 0 or 1. The problem is to devise general 
methods which interpolate between these special values where an exact analysis may 
no longer be possible. 

We shall develop a perturbation expansion for the eigenstates and energy levels of 
H(A) in powers of A(1-A). This perturbation expansion is exact for A = 0 or 1 and 
converges rapidly to the known result for a simple example we introduce to illustrate 
the theory. 

It is important that H,, H, have the same type of spectrum. Otherwise, we shall 
not be able to keep track of a particular energy level as A varies. In this case, the interpola- 
tion will not be smooth. 

The discussion centres on the ground state energy and assumes nondegeneracy. 
The necessary generalizations are straightforward. 

2. Variational procedure for the ground state energy 

The (normalized) eigenstates u i ,  ui and energies Eoi ,  E l i  of H o ,  H, are known exactly. 
We shall write E,, = E o ,  E,,  = E, .  

Let H ( I )  have ground state $(I )  with energy E@). Then $(O) = U,, +(I) = U,. 
Assume a normalized variational trial ground state of the form 

We find that the numbers f ( A ) ,  g(A) which give the minimum expectation value of the 
energy satisfy the equation 

(1 -A)Ig2+(1 -A-AM)fg-AMIf’ = 0 (3) 
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where we have introduced 

M O  = (CO, Hot.,) - E ,  

Ml = ( ~ o , ~ , ~ o ) - ~ ,  

hl = M,/.Mo 

I = (U,, U , )  # 0. 

The normalization condition is 

1 = f'2 + g2 + 2 g f Z .  

E(i) = (1 - i)(Mog2 +E,,) + i (M1 f 2  + E ~ ) .  

An estimate E(i) of the ground state energy is then 

To test the accuracy of the procedure we take 

H ,  = 4 ( p 2  +a:q2) ( i  = 0, 1) 

14) 

and compare the exact ground state energy 

E@) = +{ (1 - i.)a{ + ;.a;) '1' (9) 

with the estimate from the variational calculation. 
I t  is a straightforward matter to write down the normalized ground state wave- 

functions for the oscillators H,, HI and to evaluate M and I .  Explicit expressions for 
f, g can now be found from (3) and (5) but these are somewhat messy. Instead, with 
a, = 1, a, = 2 to somehow represent the general case, the trial energy g(2) has been 
numerically calculated for i. = 0 (0.1) 1. Table 1 summarizes the computations and also 
includes estimates of the ground state energy to several orders of standard perturbation 

Table 1 .  Summary of results of approximation schemes 

1. 
- 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
I .o 

Exact 
energy 

0.5 
0,5701 
0.6325 
0,6892 
0.7416 
0,7906 
0.8367 
0.8803 
0.9220 
0.96 18 
1 .o 

E(;.) 

0.5 
0,5706 
0.6338 
0.6910 
0,7435 
0.7922 
0.8379 
0.8811 
0.9223 
0.9619 
1 .o 

Interpolation 
expansion 

El(;.] E&) 

0.5 0.5 
0.5714 0.5700 
0.6360 0,6318 
0.6946 0.6879 
0.7480 0.7399 
0.7969 0.7888 
0,8420 0.8352 
0.8841 0.8795 
0.9240 0,9216 
0.9624 0.9617 
1.0 1.0 

Perturbation theory in 
powers of L 

~~ 

k?lJ(;.) Fz1(2) E'" ' ( i )  

0.5 0.5 0.5 0.5 
0.5750 0,5794 0,5702 0.5701 
0.6500 0.6275 0,6343 0,6317 
0.7250 0.6744 0.6972 0,6843 
0.8O00 0,7100 0.7640 0.7235 
0.8750 0.7344 0.8398 0,7410 
0.9500 0.7475 0,9297 0,7247 
1.0250 0,7494 1.0388 0.6589 
1.1000 0.7400 1,1720 0,5240 
1.1750 0.7194 1.3345 0.2965 
1,2500 0.6875 1,5312 -0.0508 
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theory. Here E'")(A) is the nth order estimate of E(A) in a power series expansion about 
A = 0. 

We see that perturbation theory converges satisfactorily for A < 0.25 but that con- 
vergence is slow beyond this value. Indeed, for 2 > 3 successive terms grow in size and 
the expansion is useless. 

For A = 5, second order perturbation theory is about 7 %  out. Contrast this with 
the variational calculation which for less labour produces an estimate which differs 
0.2 % from the exact value. 

3. Interpolation expansion of an arbitrary function 

The variational calculation suffers because of the element of guesswork involved in 
setting up the trial ground state. There is, in fact, no reason why the exact state should 
look anything like (2) except near the values A = 0, 1. 

In the next section we derive a series expansion for E(A) (and +(A)) in powers of 
t = A(1 -A). Such an expansion exists for an arbitrary well behaved function. 

We write 

f (A)  = J b + t . j l + t 2 J ; +  . . .  

To determine the coefficients in the expansion, introduce the partial sum 

and it follows that 

An alternative procedure is to express f (A) as a power series in A, and use 

I = [l, 11 

A = [O, I] 

i2 = [O, l ] + t [ - l ,  - I ]  

A3 = [O, l ]+ t [ - l ,  -21 

A4 = [O, 1]+t[-1, -3]+t2[1, 11 

to translate successive terms. 
Finally, we note the multiplication formula 

X J i  = ((1 + Agi) ((1 - + Agj) 

= (l-n)f;,gj+nfjgi-t(gi-f;:)(gj-fj). 
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4. Interpolation expansion for the ground state 

may be assumed real. 
To find the coefficients in these series we substitute into the Schrodinger equation 

H(1)$(1) = E(I)$(A) and equate terms of the same power in t on both sides of the expan- 
sion. 

Zeroth order contributions come from 

This yields two eigenvalue equations 

Hoa,  = A,ro HlPO = AlPO. (17) 

Since we are interested in the ground state we make the identification 

E o  = [E,,E,I G o  = [U,. U , ] .  (18) 

First order contributions arise from t H $ ,  , tE,$,, &,$, and from (16). Using (14). 

H o g ,  - (Hi - H o ) ( ~ o  - U,) = A 1 U, + Eo%, - ( E ,  - Eo)(  ti0 - U,) (191 

~ , P , - ( ~ , - ~ , ) ( ~ , - u , )  = ~ , U , + E l P l - ( ~ , - ~ , ) ( U o - U , ) .  (20) 

neglecting second order terms in t gives 

and 

To determine A , and B ,  we take the innerproduct of (19), (20) with U,, vo  respectively. 
and find 

A ,  = M ,  

E ,(i) = (1 - j v ) (Eo + t M  + ).(El + t M o )  

B ,  = M O .  
Thus 

(21) 

Higher order corrections are determined in a similar manner using the orthogonality 
correct to terms of first order in t .  

conditions (U,, U]) = a,, = ( U , ,  U ] ) .  We find 
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Also 

provides an (un-normalized) first order estimate of the ground state $(A). 
For A = 4, E,@), E,(A) are approximately 0.8 %, 0.2 %, respectively, in error for the 

simple example of Q 2. In this case, the results for the second order interpolation calcula- 
tion are at  least as good as the variational estimate. 

5. Discussion 

Methods have been presented which, under suitable conditions, give good estimates 
of the ground state energy for the interpolation problem. The basic assumptions fed 
into the theory such as the requirement that H o ,  H ,  have the same type of energy 
spectrum are no worse than standard perturbation theory. 

Interpolation theory can be used to treat the general problem of two interacting 
systems. H o  and H ,  represent the isolated systems. The approach is feasible when the 
two Hamiltonians have similar characteristics and it is unrealistic to regard one as a 
perturbation on the other. 

Consider a binary alloy. A set ( k }  of electrons interacts with species A, B of nuclei 
having charges Z,, Z B .  The Hamiltonian for the combined system can be written 

where Vis the electron-electron energy. Set 

and note ( 1 )  with A = ZB/Z,  Z = ZA+ZB.  Interpolation theory gives an expansion in 
A( 1 - I )  = ZAZB/Z2 about the single-species configurations. 

For an application of the method to the diatom, see Byers-Brown and Power (1970). 
Other developments in interpolation theory are envisaged in a Green function 

approach. We define 

1 
G(E,A) = ~ 

E - H ( I )  

and expand in terms of Go(E) = 1/E - H,, G,(E) = 1/E - H, and t .  The result is 

and the well worn methods of perturbation theory can be employed to evaluate the 
second term to arbitrary order in t .  But this is poaching material from a future paper. 
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